Abstract

Unmanned aircraft or drones as they are sometimes called are continuing to become part of more real-life applications. The integration of unmanned aerial vehicles in public airspace is becoming an important issue that should be addressed. As the number of unmanned aerial vehicles and their applications are largely increasing, air traffic with more unmanned aircraft has to be given more attention to prevent collisions and maintain safe skies. Unmanned aerial vehicle air traffic integration and regulation has become a priority to different regulatory agencies and has become of greater interest for many researchers all around the world. In this research, a sampling-based air traffic integration, path planning, and collision avoidance approach is presented. The proposed algorithm expands an existing 2D sampling-based approach. The original 2D approach deals with only two unmanned aircraft. Each of the two aircraft shares location information with a ground-based path planner computer, which would send back the avoidance waypoints after performing the 2D sampling. The algorithm proposed in this article can handle any number of drones in the 3D space by performing either 2D or 3D sampling. The proposed work shows a 10-fold enhancement in terms of the number of unmanned aerial vehicle collisions. The presented results also contribute to enabling a better understanding of what is expected of integrating more drones in dense skies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.