Abstract

Due to their relevance in controller design, we consider the problem of determining the $\mathcal{L}^2$-gain, passivity properties and conic relations of an input-output system. While, in practice, the input-output relation is often undisclosed, input-output data tuples can be sampled by performing (numerical) experiments. Hence, we present sampling strategies for discrete time and continuous time linear time-invariant systems to iteratively determine the $\mathcal{L}^2$-gain, the shortage of passivity and the cone with minimal radius that the input-output relation is confined to. These sampling strategies are based on gradient dynamical systems and saddle point flows to solve the reformulated optimization problems, where the gradients can be evaluated from only input-output data samples. This leads us to evolution equations, whose convergence properties are then discussed in continuous time and discrete time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.