Abstract
Training agents via deep reinforcement learning with sparse rewards for robotic control tasks in vast state space are a big challenge, due to the rareness of successful experience. To solve this problem, recent breakthrough methods, the hindsight experience replay (HER) and aggressive rewards to counter bias in HER (ARCHER), use unsuccessful experiences and consider them as successful experiences achieving different goals, for example, hindsight experiences. According to these methods, hindsight experience is used at a fixed sampling rate during training. However, this usage of hindsight experience introduces bias, due to a distinct optimal policy, and does not allow the hindsight experience to take variable importance at different stages of training. In this article, we investigate the impact of a variable sampling rate, representing the variable rate of hindsight experience, on training performance and propose a sampling rate decay strategy that decreases the number of hindsight experiences as training proceeds. The proposed method is validated with three robotic control tasks included in the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves improved training performance and increased convergence speed over the HER and ARCHER with two of the three tasks and comparable training performance and convergence speed with the other one.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have