Abstract
Abstract This paper discusses the quality of the analysis given by the ensemble Kalman filter in a perfect model context when ensemble sizes are limited. The overall goal is to improve the theoretical understanding of the problem of systematic errors in the analysis variance due to the limited size of the ensemble, as well as the potential of the so-called double-ensemble Kalman filter, covariance inflation, and randomly perturbed analysis techniques to produce a stable analysis—that is to say, one not subject to filter divergence. This is achieved by expressing the error of the ensemble mean and the analysis error covariance matrix in terms of the sampling noise in the background error covariance matrix (owing to the finite ensemble estimation) and by comparing these errors for all methods. Theoretical predictions are confirmed with a simple scalar test case. In light of the analytical results obtained, the expression of the optimal covariance inflation factor is proposed in terms of the limited ensemble size and the Kalman gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.