Abstract

A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear filtering theory unifies the data assimilation and ensemble generation problem that have been key foci of prediction and predictability research for numerical weather and ocean prediction applications. A new algorithm, referred to as an ensemble adjustment Kalman filter, and the more traditional implementation of the ensemble Kalman filter in which “perturbed observations” are used, are derived as Monte Carlo approximations to the nonlinear filter. Both ensemble Kalman filter methods produce assimilations with small ensemble mean errors while providing reasonable measures of uncertainty in the assimilated variables. The ensemble methods can assimilate observations with a nonlinear relation to model state variables and can also use observations to estimate the value of imprecisely known model parameters. These ensemble filter methods are shown to have significant advantages over four-dimensional variational assimilation in low-order models and scale easily to much larger applications. Heuristic modifications to the filtering algorithms allow them to be applied efficiently to very large models by sequentially processing observations and computing the impact of each observation on each state variable in an independent calculation. The ensemble adjustment Kalman filter is applied to a nondivergent barotropic model on the sphere to demonstrate the capabilities of the filters in models with state spaces that are much larger than the ensemble size. When observations are assimilated in the traditional ensemble Kalman filter, the resulting updated ensemble has a mean that is consistent with the value given by filtering theory, but only the expected value of the covariance of the updated ensemble is consistent with the theory. The ensemble adjustment Kalman filter computes a linear operator that is applied to the prior ensemble estimate of the state, resulting in an updated ensemble whose mean and also covariance are consistent with the theory. In the cases compared here, the ensemble adjustment Kalman filter performs significantly better than the traditional ensemble Kalman filter, apparently because noise introduced into the assimilated ensemble through perturbed observations in the traditional filter limits its relative performance. This superior performance may not occur for all problems and is expected to be most notable for small ensembles. Still, the results suggest that careful study of the capabilities of different varieties of ensemble Kalman filters is appropriate when exploring new applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.