Abstract
We use the operational phase-space distributions and sampling entropies developed in the preceding paper [V. Bu\ifmmode \check{z}\else \v{z}\fi{}ek, C. H. Keitel, and P. L. Knight, Phys. Rev. A 51, 2575 (1995)] to discuss the nature of quantum interference between components of superpositions of states. We show how the Wehrl entropy, a special case of the sampling entropy, is a useful discriminator between different kinds of superpositions and of statistical mixtures, and is determined essentially by the coherent-state content. Apart from interference terms, this content is given by the quantum uncertainty of a single coherent state and the classical contribution to the number of coherent states necessary to tile the dominant phase-space ``patch'' representing the quantum state of interest. We illustrate these ideas using nonclassical superpositions of coherent states, where interference modifies the phase-space distributions, and show how these features are sensitive to dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.