Abstract
In this paper we discuss the nonclassical properties of quantum superpositions of coherent states of light. Using general expressions for the Wigner functions of superposition states we analyze the consequences of quantum interference between coherent states. We describe in detail nonclassical properties of a superposition of two coherent states. In particular, we study the oscillatory behavior of the photon number distribution of the even and odd coherent states. We show under which conditions a superposition of two coherent states can exhibit second- and fourth-order squeezing or sub-Poissonian photon statistics. We examine the sensitivity of nonclassical effects such as oscillations in the photon number distribution or second-order squeezing to dissipation. We demonstrate that quantities such as the photon number distribution and interferences in phase space are highly sensitive to even a quite small dissipative coupling, because they depend on all moments of the field observables, and higher moments decay more rapidly than lower moments. Quantities such as quadrature squeezing, on the other hand, are more robust against dissipation because they involve only lower moments. Finally, we find a remarkable effect whereby fourth-order squeezing is generated by damping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.