Abstract

Two facts about cortex are widely accepted: neuronal responses show large spiking variability with near Poisson statistics and cortical circuits feature abundant recurrent connections between neurons. How these spiking and circuit properties combine to support sensory representation and information processing is not well understood. We build a theoretical framework showing that these two ubiquitous features of cortex combine to produce optimal sampling-based Bayesian inference. Recurrent connections store an internal model of the external world, and Poissonian variability of spike responses drives flexible sampling from the posterior stimulus distributions obtained by combining feedforward and recurrent neuronal inputs. We illustrate how this framework for sampling-based inference can be used by cortex to represent latent multivariate stimuli organized either hierarchically or in parallel. A neural signature of such network sampling are internally generated differential correlations whose amplitude is determined by the prior stored in the circuit, which provides an experimentally testable prediction for our framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.