Abstract

AbstractThis paper studies stabilization of networked control systems with communication constraints, variable sampling interval and delay. We focus on static output feedback controllers for linear systems. The system sensors nodes are supposed to be distributed over a network. Data transmission over the network is subject to the Round-Robin scheduling protocol. We present the closed-loop system as a switched system with multiple delayed samples. By constructing an appropriate Lyapunov functional, which takes into account the switched system model and the sawtooth delays induced by sampled-data control, we derive the exponential stability conditions in terms of Linear Matrix Inequalities (LMIs). Polytopic uncertainties in the system model can be easily included in the analysis. The efficiency of the method is illustrated on the classical cart-pendulum benchmark problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.