Abstract
In situ transmission electron microscope compression testing of submicron Al pillars shows two sample size regimes with contrasting behavior underlying the large strain bursts. For small pillars, the bursts originate from explosive and highly correlated dislocation generation, characterized by very high collapse stresses and nearly dislocation-free post-collapse microstructure. For larger pillars, the bursts result from the reconstruction of jammed dislocation configurations, featuring relative low stress levels and retention of dislocation network after bursts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.