Abstract
Anisotropic Gaussian random fields arise in probability theory and in various applications. Typical examples are fractional Brownian sheets, operator-scaling Gaussian fields with stationary increments, and the solution to the stochastic heat equation. This paper is concerned with sample path properties of anisotropic Gaussian random fields in general. Let $$X = \left\{ {X\left( t \right),t \in {\rm{R}}^N } \right\}$$ be a Gaussian random field with values in Rd and with parameters H1,…,HN. Our goal is to characterize the anisotropic nature of X in terms of its parameters explicitly. Under some general conditions, we establish results on the modulus of continuity, small ball probabilities, fractal dimensions, hitting probabilities and local times of anisotropic Gaussian random fields. An important tool for our study is the various forms of strong local nondeterminism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.