Abstract
We propose a sample average approximation-based outer-approximation algorithm (SAAOA) that can address nonconvex two-stage stochastic programs (SP) with any continuous or discrete probability distributions. Previous work has considered this approach for convex two-stage SP (Wei and Realff in Comput Chem Eng 28(3):333–346, 2004). The SAAOA algorithm does internal sampling within a nonconvex outer-approximation algorithm where we iterate between a mixed-integer linear programming (MILP) master problem and a nonconvex nonlinear programming (NLP) subproblem. We prove that the optimal solutions and optimal value obtained by the SAAOA algorithm converge to the optimal solutions and the optimal value of the true SP problem as the sample size goes to infinity. The convergence rate is also given to estimate the sample size. Since the theoretical sample size estimate is too conservative in practice, we propose an SAAOA algorithm with confidence intervals for the upper bound and the lower bound at each iteration of the SAAOA algorithm. Two policies are proposed to update the sample sizes dynamically within the SAAOA algorithm with confidence intervals. The proposed algorithm works well for the special case of pure binary first stage variables and continuous stage two variables since in this case the nonconvex NLPs can be solved for each scenario independently. The proposed algorithm is tested with a stochastic pooling problem and is shown to outperform the external sampling approach where large scale MINLPs need to be solved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.