Abstract

We consider in this paper the nonconvex mixed-integer nonlinear programming problem. We present a mixed local search method to find a local minimizer of an unconstrained nonconvex mixed-integer nonlinear programming problem. Then an auxiliary function which has the same global minimizers and the same global minimal value as the original problem is constructed. Minimization of the auxiliary function using our local search method can escape successfully from previously converged local minimizers by taking increasing values of parameters. For the constrained nonconvex mixed-integer nonlinear programming problem, we develop a penalty based method to convert the problem into an unconstrained one, and then use the above method to solve the later problem. Numerical experiments and comparisons on a set of MINLP benchmark problems show the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.