Abstract
The survival rates of individuals with cystic fibrosis (CF) have significantly increased as a result of improved therapies, such as the inclusion of cystic fibrosis transmembrane conductance regulator (CFTR) modulators for some mutations. However, microbial infection of the airways remains a significant clinical problem. The well-known pathogens Pseudomonas aeruginosa and Staphylococcus aureus continue to establish difficult-to-treat infections in the CF lung. However, in recent years, there has been an increased prevalence of both Aspergillus fumigatus (Af) and non-tuberculous mycobacteria (NTM) species isolated from CF patient sputa. The emergence of these pathogens opens an important area of discussion about multikingdom infections, specifically, how interspecies interactions have the potential to shape the course of infection, such as tolerance to host immune defenses and antimicrobial therapies. Their ability to establish themselves in an existing polymicrobial environment suggests to us that microbial interactions play a significant role, and characterizing these mechanisms and understanding their implications will be critical to the future development of better antimicrobial therapies. With this minireview, we hope to inspire conversations about and demonstrate the merit of more research in this area.IMPORTANCE Incidences of non-tuberculous mycobacteria (NTM) and Aspergillus fumigatus have increased around the world over the past decade and have become a significant health threat to immunocompromised individuals such as those with cystic fibrosis (CF). CF is characterized by the buildup of mucus in the lungs which become chronically infected by a myriad of pathogens. The emergence of these pathogens in established infection sites raises many questions about the microbial ecosystems they become a part of, specifically how changes in these ecosystems impact disease outcomes. Understanding how microbial communities establish and maintain themselves despite medical treatment and host immune defenses will be critical for the development of improved therapeutic strategies.
Highlights
The survival rates of individuals with cystic fibrosis (CF) have significantly increased as a result of improved therapies, such as the inclusion of cystic fibrosis transmembrane conductance regulator (CFTR) modulators for some mutations
The presence of Burkholderia cepacia complex (Bcc) in the CF lung has long been acknowledged as the greatest threat to lung health in early adulthood; with increased life expectancy, new infectious agents are beginning to emerge
Many aspects of these emerging pathogens remain to be understood on a single species level, their ability to establish themselves in an existing polymicrobial environment in the CF lung strongly suggests that microbial interactions play a significant role in both disease progression and pathogenesis
Summary
The survival rates of individuals with cystic fibrosis (CF) have significantly increased as a result of improved therapies, such as the inclusion of cystic fibrosis transmembrane conductance regulator (CFTR) modulators for some mutations. There are many well-documented examples of interspecies and interkingdom synergistic microbial behaviors, and the complex microbiome of the CF lung provides an environment which can be modeled in order to study such interactions in the context of human disease [6, 7].
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have