Abstract

The success of correctly identifying all the components of a nonlinear mixed‐effects model is far from straightforward: it is a question of finding the best structural model, determining the type of relationship between covariates and individual parameters, detecting possible correlations between random effects, or also modeling residual errors. We present the Stochastic Approximation for Model Building Algorithm (SAMBA) procedure and show how this algorithm can be used to speed up this process of model building by identifying at each step how best to improve some of the model components. The principle of this algorithm basically consists in “learning something” about the “best model,” even when a “poor model” is used to fit the data. A comparison study of the SAMBA procedure with Stepwise Covariate Modeling (SCM) and COnditional Sampling use for Stepwise Approach (COSSAC) show similar performances on several real data examples but with a much reduced computing time. This algorithm is now implemented in Monolix and in the R package Rsmlx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.