Abstract

A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q 1 = 4.9 % and q 3 = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate parameters for four compounds that the manual stepwise approach did not identify. The single-objective, hybrid genetic algorithm represents a general pharmacokinetic model building methodology whose ability to rapidly search the feasible solution space leads to nearly equivalent or superior model fits to pharmacokinetic data.Electronic supplementary materialThe online version of this article (doi:10.1007/s10928-012-9258-0) contains supplementary material, which is available to authorized users.

Highlights

  • Introduction and backgroundTwo key objectives in population pharmacokinetic model building, removing systematic errors and minimizing the amount of unexplained variance between the experimental data and the model predictions, are accomplished by selecting an appropriate model structure, identifying fixed and random effects, and including characteristics of individuals in the model

  • We hypothesized that a single-objective, hybrid genetic algorithm (SOHGA) approach for selection of covariates and function forms in pharmacokinetic model building would accurately identify covariates, models, and appropriate initial estimates of model parameters with equal or superior fits to clinical data versus a manual stepwise method building approach

  • For covariate identification in a simulated dataset, we found that a SOHGA with a 10 point penalty per covariate correctly identified as many true covariates as an automated stepwise covariate modeling but with fewer spurious covariate relationships (1 vs. 2 spurious covariates)

Read more

Summary

Introduction and background

Two key objectives in population pharmacokinetic model building, removing systematic errors (bias) and minimizing the amount of unexplained variance between the experimental data and the model predictions, are accomplished by selecting an appropriate model structure, identifying fixed and random effects, and including characteristics of individuals (covariates) in the model. Bies et al [3] discussed the suitability of various multi-variable optimization methods to pharmacokinetic model covariate and structure decision making before selecting a single-objective, hybrid genetic algorithm (SOHGA) based modeling building method, coupling the SOHGA to NONMEM for parameter estimation, and demonstrating its application on pharmacokinetic data for a single compound. In the paper by Bies et al [3], the SOHGA resulted in a best-fit candidate model with the same compartmental structure as the stepwise method but with a statistically better fit to the data, additional covariates, and lower between patient variability In this manuscript the use of SOHGA for pharmacokinetic model building is evaluated by comparing the selection of covariates and model parameter estimates using automated stepwise covariate selection, Lasso, and SOHGA for a simulated dataset and fits to plasma concentration data for the final models selected by these manual stepwise versus SOHGA approaches for each of seven, prospectively identified, compounds. The SOHGA methodology was applied by building a set of candidate models, running each in NONMEM to estimate the model parameters, describing the fitness of candidate models with a single objective function value, and performing hybrid, genetic algorithm operations

Methods
Results
Objective function value
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call