Abstract
Mixture priors provide an intuitive way to incorporate historical data while accounting for potential prior-data conflict by combining an informative prior with a noninformative prior. However, prespecifying the mixing weight for each component remains a crucial challenge. Ideally, the mixing weight should reflect the degree of prior-data conflict, which is often unknown beforehand, posing a significant obstacle to the application and acceptance of mixture priors. To address this challenge, we introduce self-adapting mixture (SAM) priors that determine the mixing weight using likelihood ratio test statistics or Bayes factors. SAM priors are data-driven and self-adapting, favoring the informative (noninformative) prior component when there is little (substantial) evidence of prior-data conflict. Consequently, SAM priors achieve dynamic information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite and large samples and achieve information-borrowing consistency. Moreover, SAM priors are easy to compute, data-driven, and calibration-free, mitigating the risk of data dredging. Numerical studies show that SAM priors outperform existing methods in adopting prior-data conflicts effectively. We developed R package "SAMprior" and web application that are freely available at CRAN and www.trialdesign.org to facilitate the use of SAMpriors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.