Abstract

To date, studies on the geological conditions in inland aquifers leading to pathways for upwelling deep saline groundwater due to pumping have not been published yet. Therefore, this paper conducted a theoretical modeling study to raise two hypotheses about deep saline-groundwater pathways leading to saltwater upconing below a pumping well in an inland aquifer based on the field situation at the Beelitzhof waterworks in southwestern Berlin (Germany), defined as follows: (1) there are windows in the Rupelian clay caused by glacial erosion, where their locations are uncertain, and (2) there are no windows in the clay, but the clay is partially thinned out but not completely removed by glacial erosion, so salt can merely come through the clay upward by diffusion and eventually accumulate on its top. These hypotheses were tested to demonstrate the impact of the lateral distance between windows in the clay and the well, as well as salt diffusion through the clay depending on its thickness on saltwater intrusion in the pumping well, respectively, using a density-dependent groundwater flow and solute transport model. Hypothesis 1 was validated with four scenarios that windows could occur in the clay at the site, and their locations under some conditions could significantly cause saltwater intrusion, while hypothesis 2 could be excluded, because salt diffusion through the clay with thickness greater than 1 m at the site was not able to cause saltwater intrusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call