Abstract

Halophilic salilysin is first synthesized as a pro-form, which has been shown autolysis activity to process pro-region (55 amino acids long) three times to form intermediate 1 (I1), intermediate 2 (I2) and final mature (M) salilysin. The autolysis of I1- to M-form salilysin in vitro was significantly accelerated with increasing NaCl concentration up to 4M. Strong salting-out salts, (NH4)2SO4, Na2SO4 and MgSO4, were more effective, suggesting that autolysis is enhanced by inter-molecular association or structure compaction or both. However, MgCl2, a salting-in salt, was also effective, suggesting that other mechanisms, such as charge shielding and ionic binding to this halophilic protein, operated. Autolytic cleavage at site 3 resulted in mixed formation of correctly and incorrectly processed mature forms in the absence of salt, indicating that salt affected the accuracy of autolytic cleavage reaction. Far UV circular dichroism (CD) measurements indicated that E167A pro-salilysin showed an identical CD spectrum to the wild-type mature salilysin, suggesting pro-form has a proper fold for proteolytic activity. Thermal scanning indicated that E167A pro-salilysin was more heat-stable by ~ 10°C than mature form. The CD spectra, thermal stability and modeling structure of salilysin clearly suggested that pro-salilysin is folded to the same structure as native form and is functional for autolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.