Abstract

The firefly bioluminescence reaction, which uses luciferin, Mg-ATP, and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and visible light is emitted. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Among different beetle luciferases, those from Phrixothrix railroad worm emit either yellow or red bioluminescence colors. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional Arg residue at 353, which is absent in firefly luciferases. We report here the construction and purification of a mutant at residue Arg(356), which is not conserved in beetle luciferases. By insertion of an additional residue (Arg(356)) using site-specific insertion mutagenesis in a green-emitter luciferase (Lampyris turkestanicus) the color of emitted light was changed to red and the optimum temperature of activity was also increased. Insertion of this Arg in an important flexible loop showed changes of the bioluminescence color and the luciferase reaction took place with relatively retention of its basic kinetic properties such as Km and relative activity. Comparison of native and mutant luciferases using homology modeling reveals a significant conformational change of the flexible loop in the red mutant. Movement of flexible loop brought about a new ionic interaction concomitant with a change in polarity of the emitter site, thereby leading to red emission. It is worthwhile to note that the increased optimum temperature and emission of red light might make mutant luciferase a suitable reporter for the study of gene expression and bioluminescence imaging.

Highlights

  • The bioluminescence color of fireflies has a wide range from green to red depending on the species: fireflies emit in the yel

  • Construction, Expression, and Purification of the Native and Mutant Luciferases—To identify the residue involved in the determination of BL color in luciferases, a multiple sequence alignment among firefly luciferases and the red-emitting railroad worm luciferase was performed (Fig. 1)

  • Multiple sequence alignment showed the presence of Arg353 in Phrixothrix hirtus red (PhRE) luciferase, which corresponds to the deleted residue in firefly luciferases

Read more

Summary

EXPERIMENTAL PROCEDURES

The following reagents and kits were used: isopropyl ␤-Dthiogalactopyranoside, kanamycin, and ATP (Roche), D-luciferin potassium salt (Sigma), restriction enzyme (Fermentase), Pfu polymerase, plasmid extraction kit, gel purification kit, and the PCR purification kit (Bioneer Co.), Ni-NTA spin kit (Qiagen Inc.), and the pET28a vector (Novagen)

Insertion Mutagenesis
Protein Expression and Purification
Determination of Kinetic Parameters
Measurement of Bioluminescence Emission Spectra
Structural Studies
Model Building and Analysis
RESULTS
Relative specific activity
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call