Abstract

AbstractEstuarine salt intrusion greatly threatens freshwater supply in surrounding lands. Physical barriers, which reduce the estuary length (L), are widely constructed to control salt intrusion. Yet, the role of L in salt intrusion remains unknown. Using a process‐based, idealized, semi‐analytical three‐dimensional model, we systematically investigate for the first time this unknown for tide‐dominated, periodically weakly stratified estuaries. Results show decreasing L significantly reduces salinities for short estuaries (L < Lw/4, with Lw the dominant tidal wavelength), but not for long estuaries. Tidal pumping remains a key salt importer in most estuaries, regardless of L. However, substantial decreases in L relative to Lw/4 can change the dominant landward salt importer from tidal pumping to horizontal diffusion. The latter, together with gravitational circulation, weakens responses of salt intrusion to changes in tidal and river forcing in short estuaries. This study highlights the importance of considering L to understanding and mitigating salt intrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.