Abstract
HypothesisPorous magnetic silica beads are promising materials for biological and environmental applications due to their enhanced adsorption and ease of recovery. This work aims to develop a new, inexpensive and environmentally friendly approach based on agglomeration of nanoparticles in aqueous droplets. The use of an emulsion as a geometrical constraint is expected to result in the formation of spherical beads with tunable composition depending on the aqueous phase content. ExperimentsMagnetic silica beads are produced at room temperature by colloidal destabilization induced by addition of CaCl2 to a water-in-oil emulsion containing SiO2 and Fe3O4 nanoparticles. The impact of the salt concentration, emulsification method, concentration of hydrophobic surfactant as well as silica content is presented in this paper. FindingsThis method enables the production of spherical beads with diameters between 1 and 9 µm. The incorporation of magnetic nanoparticles inside the bead’s structure is confirmed using Energy Dispersive X-ray spectrometry (EDX) and Scanning Transmission Electron Microscopy (STEM) and results in the production of magnetic responsive beads with a preparation yield up to 84%. By incorporating the surfactant Span 80 in the oil phase it is possible to tune the roughness and porosity of the beads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.