Abstract
Stable electrolytes are urgently required for lithium-ion batteries based on lithium-rich layered oxides (LLOs), which generally suffer from fast capacity and voltage decay at high voltages up to 4.8 V. Herein, we report a salt-concentrated electrolyte consisting of 4 M lithium hexafluorophosphate (LiPF6) salt in ester solvents of fluoroethylene carbonate (FEC) and dimethyl carbonate (DMC) to alleviate the above challenges. The solvent structure in the 4 M electrolyte shows more volatile DMC integrated with Li+ and more free antioxidative FEC compared with a 1 M electrolyte, broadening the operation voltage. Simultaneously, this electrolyte endows a thin yet high elasticity modulus LiF-rich interphase on the LLOs surface, which can effectively prevent diverse side reactions and transition metal migration, consequently improving the electrochemical performance with a voltage decay of only 0.46 mV/cycle and capacity retention of 80.3% after 500 cycles. This simple and effective approach boosts the development of high-energy-density batteries using LLOs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.