Abstract

Wounds in the oral cavity, constantly exposed to both saliva and bacteria, heal quickly without infection. Furthermore, during licking of skin wounds, saliva promotes wound healing and plays a role in keeping the wound free of infection. To investigate whether saliva induces expression of antimicrobial peptides (AMPs) in human epidermal keratinocytes and whether saliva promotes clearance of intracellular bacteria in these cells. Expression of AMPs was investigated in the oral mucosa and ex vivo injured skin by immunohistochemistry. Human beta-defensin-3 expression was investigated in epidermal keratinocytes after saliva stimulation, using real-time polymerase chain reaction and immunofluorescence. We found higher expression of AMPs in the oral mucosa than in the epidermis. Saliva accelerated the injury-induced expression of AMPs in human skin ex vivo and was a potent inducer of the expression of AMPs in epidermal keratinocytes. The expression of AMPs was induced by metalloproteinase-dependent epidermal growth factor receptor (EGFR) transactivation mediated by a salivary lipid. Saliva increased the intracellular clearance of Staphylococcus aureus in keratinocytes through EGFR activation. These findings suggest a previously unreported role of saliva in innate immunity and demonstrate for the first time that saliva induces gene expression in epidermal keratinocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call