Abstract
Biochar may improve soil microbial and biochemical functions under abiotic stresses. In this research, we studied changes in soil microbial properties and processes after sugarcane bagasse biochar (SCB) application (1% w/w) to a soil contaminated with Cd under saline conditions during an incubation experiment. SCB produced at 400 °C (B400) and 600 °C (B600) increased soil organic carbon (SOC) content by 89–127% and dissolved organic carbon content by 21–70%. NaCl salinity mobilized Cd by 16–19%, while biochar immobilized Cd by 14–18%, indicating the use of biochar would offset the increase in Cd availability induced by salinity. SCB application improved microbial and biochemical functions (up to 280%) in the soils contaminated with Cd under salinity stress. B400 biochar was often more effective in improving the soil microbial properties and functioning than B600 biochar. SCB application reduced the detrimental effects of salinity-induced Cd toxicity on soil microbial community and enzyme activity mainly through retaining Cd and supplying C substrate for microbial uptake and activity. The factor analysis and redundancy analysis results also confirmed that SOC and Cd availability was the most important factors and accounted for a large portion of the variation in soil microbial properties and enzyme activities in saline Cd-contaminated soils amended with SCB. This study indicated that B400 applied at 1% could be used in saline Cd-contaminated soils to protect the soil microbial communities from Cd toxicity, and to mitigate the potential stresses associated with the co-occurrence of Cd contamination and salinity on critical soil microbial and biochemical functions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have