Abstract
The study aims to evaluate the reproductive performance, serum biochemical indices, growth, antioxidant capacity, and immune response of Florida Red Tilapia (Oreochromis sp.) progeny reared at different salinity levels within biofloc technology (BFT) systems, focusing on egg production, fertilization rates, tolerance to oxidative stress, and offspring performance. Broodstock reared in biofloc systems (BF) were compared to those in clear water (Without biofloc, WBF) across three salinity levels (18, 28, and 36‰) over a 7-month period. The study also assessed the tolerance of fry reared in biofloc systems to direct transfer to high salinity (36‰) without prior acclimatization. A total of 216 females (initial body weight: 182 ± 1.8 g) and 72 males (initial body weight: 201 ± 0.88 g) were randomly assigned to 18 concrete tanks (2 × 6 × 1 m) to investigate the effects of BFT on spawning performance and larval survival under high-salinity conditions. The findings indicated that appropriate salinity (18‰) in BFT systems positively affected reproductive efficiency, enhanced immunological parameters, and improved growth performance, but elevated salinity levels (36‰) led to reduced reproductive success and hindered growth performance. Florida red tilapia thrive in water quality conditions that are within acceptable limits. High salinity environments led to increased dissolved oxygen but reduced pH, especially in BFT ponds. BFT improved reproductive performance, reduced spawning time, and increased egg production. It also improved hatchability, larval quality, and yolk sac absorption. The BFT broodstock showed higher levels of key proteins (total protein, albumin, and globulin) and improved immune parameters, which helped counteract the negative effects of elevated salinity and enhanced their overall health and stress tolerance. In high-salinity environments, offspring in BFT systems showed higher survival rates and growth rates. In conclusion, BFT improves the reproductive performance, growth, and immune response of Florida red tilapia under high salinity. It enhances egg production, hatchability, and larval survival, while also improving water quality and immune function, making it a sustainable solution for tilapia aquaculture in saline environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have