Abstract
A conceptual hydrodynamic model in the Holocene and upper Pleistocene beneath the Louisiana wetlands is described in terms of safety distributions. Porewater safety is calculated from electrical measurements, including resistivity soundings, electric logs, and electromagnetic profiling. Electrical measurements support the primary, basin-wide groundwater flow model; however, the data also indicate secondary contributions from expulsion of fluids under geopressure along active growth faults and from original waters of deposition. Expulsion of water from growth faults has been described previously for deeper sections of the Pleistocene, but has not been reported for the Holocene or upper Pleistocene beneath the Louisiana wetlands. Porewater chemistry variations beneath the coastal wetlands are a consequence of the following (in order of importance): (1) environment of deposition; (2) a basin-wide, regional flow system; (3) expulsion from deep-seated growth faults; and (4) pore water extrusion due to compaction. Water chemistry in Holocene clays and muds is influenced primarily by the deposition environment In Pleistocene sands, the chemistry is a function of the other three factors.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have