Abstract

In a clinical investigation, Kumar and coworkers reported the hemodynamic events that accompany plasma volume expansion over 3 hours in healthy adult volunteers, and found that increases in stroke volume (SV) may be related to increases in left ventricular (LV)/right ventricular (RV) end-diastolic volume, as they expected, but also to decreases in LV/RV end-systolic volume. The latter finding suggests increased contractility and/or decreased afterload, which do not fit with their perception that clinicians ascribe increases in SV to increases in end-diastolic volume based on Starling's work. Increased ejection fraction and decreased vascular resistances were also observed. The same authors recently reported novel data suggesting that reduced blood viscosity may account for the observed reduction in vascular resistances with saline volume expansion. However, the variances in preload and afterload, along with uncertainty in estimates of contractility, substantially limit their ability to define a primary mechanism to explain decreases in LV end-systolic volume. A focus on using ejection fraction to evaluate the integrated performance of the cardiovascular system is provided to broaden this analytic perspective. Sagawa and colleagues described an approach to estimate the relationship, under clinical conditions, between ventricular and arterial bed elastances (i.e. maximal ventricular systolic elastance [Emax] and maximal arterial systolic elastance [Ea]), reflecting ventricular–arterial coupling. I used the mean data provided in one of the reports from Kumar and coworkers to calculate that LV Emax decreased from 1.09 to 0.96 mmHg/ml with saline volume expansion, while Ea decreased from 1.1 to 0.97 mmHg/ml and the SV increased (i.e. the increase in mean SV was associated with a decrease in mean afterload while the mean contractility decreased). The results reported by Kumar and coworkers invite further studies in normal and critically ill patients during acute saline-induced plasma volume expansion and hemodilution. If reduced viscosity decreases afterload, then this raises the questions by what mechanism, and what is the balance of benefit and harm associated with reduced blood viscosity affecting oxygen delivery? Why the mean Emax might decrease must be evaluated with respect to benefit in reducing ventricular work or a negative inotropic effect of saline.

Highlights

  • The article by Kumar and coworkers [1] is one of a series of three papers [2,3] by the authors addressing the acute hemodynamic events that accompany plasma volume expansion over 3–5 hours in healthy young adult volunteers

  • Taking into account all three reports, the most interesting finding is that increases in stroke volume (SV) following saline infusion over 3 hours may be variably related to increases in left ventricular (LV) end-diastolic volume (EDV) and/or decreases in LV end-systolic volume (ESV)

  • The fundamental findings were that 3 l of saline infused over 3 hours increases the LVEDV, RVEDV, cardiac output (CO), SV and ejection fraction (EF), whereas the LVESV, and systemic and pulmonary vascular resistances decreased

Read more

Summary

Introduction

The article by Kumar and coworkers [1] is one of a series of three papers [2,3] by the authors addressing the acute hemodynamic events that accompany plasma volume expansion over 3–5 hours in healthy young adult volunteers. Taking into account all three reports, the most interesting finding is that increases in stroke volume (SV) following saline infusion over 3 hours may be variably related to increases in left ventricular (LV) end-diastolic volume (EDV) and/or decreases in LV end-systolic volume (ESV).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.