Abstract

We present a robust salient region detection framework based on the color and orientation distribution in images. The proposed framework consists of a color saliency framework and an orientation saliency framework. The color saliency framework detects salient regions based on the spatial distribution of the component colors in the image space and their remoteness in the color space. The dominant hues in the image are used to initialize an expectation-maximization (EM) algorithm to fit a Gaussian mixture model in the hue-saturation (H-S) space. The mixture of Gaussians framework in H-S space is used to compute the inter-cluster distance in the H-S domain as well as the relative spread among the corresponding colors in the spatial domain. Orientation saliency framework detects salient regions in images based on the global and local behavior of different orientations in the image. The oriented spectral information from the Fourier transform of the local patches in the image is used to obtain the local orientation histogram of the image. Salient regions are further detected by identifying spatially confined orientations and with the local patches that possess high orientation entropy contrast. The final saliency map is selected as either color saliency map or orientation saliency map by automatically identifying which of the maps leads to the correct identification of the salient region. The experiments are carried out on a large image database annotated with ldquoground-truthrdquo salient regions, provided by Microsoft Research Asia, which enables us to conduct robust objective level comparisons with other salient region detection algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.