Abstract

Oxygen glucose deprivation (OGD)/re-oxygenation has been applied to cultured cardiomyocytes to create a cellular model of ischemic heart damage. In the current study, we explored the potential role of salidroside against OGD/re-oxygenation-induced damage in H9c2 cardiomyocytes, and studied the underlying mechanisms. We found that OGD/re-oxygenation primarily induced necrosis in H9c2 cells, which was inhibited by salidroside. Salidroside suppressed OGD/re-oxygenation-induced reactive oxygen species (ROS) production, p53 mitochondrial translocation and cyclophilin D (Cyp-D) association as well as mitochondrial membrane potential (MMP) decrease in H9c2 cells. Meanwhile, salidroside activated Akt and promoted transcription of NF-E2-related factor 2 (Nrf2)-regulated genes (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1)). Significantly, Nrf2 shRNA knockdown or Akt inhibitors (LY 294002 and wortmannin) not only prevented salidroside-induced HO-1/NQO-1 transcription, but also alleviated salidroside-mediated cytoprotective effect against OGD/re-oxygenation in H9c2 cells. These observations suggest that salidroside activates Nrf2-regulated anti-oxidant signaling, and protects against OGD/re-oxygenation-induced H9c2 cell necrosis via activation of Akt signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call