Abstract

Abstract Salicylic acid (SA) plays a role in regulating of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2·−) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1–CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1–CsICE1 transcriptional regulatory cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.