Abstract
In dynamic positron emission tomography (PET) studies, spectral analysis (SA) refers to a data-driven quantification method, based on a single-input single-output model for which the transfer function is described by a sum of exponential terms. SA allows to quantify numerosities, amplitudes and eigenvalues of the transfer function allowing, in this way, to separate kinetic components of the tissue tracer activity with minimal model assumptions. The SA model can be solved with a linear estimator alone or with numerical filters, resulting in different types of SA approaches. Once estimated the number, amplitudes and eigenvalues of the transfer function, one can distinguish the presence in the system of irreversible and/or reversible components as well as derive parameters of physiological significance.These characteristics make it an appealing alternative method to compartmental models which are widely used for the quantitative analysis of dynamic studies acquired with PET. However, despite its applicability to a large number of PET tracers, its implementation is not straightforward and its utilization in the nuclear medicine community has been limited especially by the lack of an user-friendly software application.In this paper we proposed SAKE, a computer program for the quantitative analysis of PET data through the main SA methods. SAKE offers a unified pipeline of analysis usable also by people with limited computer knowledge but with high interest in SA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.