Abstract
Dried root of Bupleurum spp. is one of the most popular ingredients in many oriental medicinal preparations. Potted Bupleurum chinense DC. seedlings were subjected to progressive drought stress by withholding irrigation followed by a rewatering phase. The changes in antioxidant system, hydrogen peroxide (H 2O 2), superoxide radicals (O 2 −), and malondialdehyde (MDA) contents as well as saikosaponin a (SSa) and saikosaponin d (SSd) content in B. chinense roots were investigated. Additionally, the antioxidant activity of the roots extract was evaluated. The results showed that B. chinense root appeared highly resistant to water deficit. Both SSa and SSd content increased with the progressive water deficit, however, decreased under severe drought conditions or after water recovery. Moderate drought treatment resulted in 83% increase in SSa content and 22% increase in SSd content compared to the well-hydrated treatment. And increased SSa and SSd content during drought were accompanied by enhanced O 2 − content and superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) activity until severe drought stress. Notably, in vitra antioxidant tests demonstrated that the lipid peroxidation inhibition capacity was positively correlated with the content of SSa and SSd, particularly significant at p = 0.05 with SSd content. These results suggest that B. chinense roots exhibit effective antioxidative protection mechanism to withstand drought stress. And it could be speculated that drought-induced SSa and SSd accumulation in B. chinense roots may be stimulated via active oxygen species, and consequently involve in mitigating the oxidative damage due to its high anti-lipid peroxidation capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have