Abstract
In this study, we have generalized the fractional action integral by using the Saigo-Maeda fractional operators defined in terms of the Appell hypergeometric function of two variables , F3(a, a′, β, β′; γ; z, ζ) with complex parameters. We have derived the associated Euler-Lagrange equation and we have studied the harmonic oscillator problem. We have proved that a PT -symmetric quantum-mechanical Hamiltonian characterized by real and discrete spectra is obtained although the system is characterized by complex trajectories. The associated thermodynamical properties were discussed and it was revealed the entropy of the quantum system decreases with time toward an asymptotically positive value similar to what is observed in quantum Maxwell demon.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have