Abstract

We refine the concept of stochastic reach avoidance for a general class of Markov processes introducing a threshold of p for the reaching probability. This new problem is called p-safety, and it aims to ensure that the given process reaches a forbidden set before leaving its ‘working’ state space with a probability of less than p. In the situation when an initial probability measure characterizes the initial states, a variant of p-safety is put forward. We call this form of safety weak p-safety. In this work, we characterize both p-safety and weak p-safety and show how to compute them. We employ semi-definite programming to compute p-safety and linear programming to compute weak p-safety. To get to this point, we use certificates of positivity of polynomials translated into the sum of squares and the Bernstein forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call