Abstract

Modern production systems, inserted in a context of high competitiveness, in accordance with policies of sustainability and people protection, as well as being integrated with other (smart) systems, makes complexity an inherent factor in any modern production system. Complexity is reflected in hardware, software and labour qualification for both the design and operation of such systems, resulting in the impossibility of (i) the prediction of all achievable states; (ii) the design of all integrated systems, (iii) non-existence of hardware faults and (iv) absence of human operating errors. Depending on the productive process under analysis, different scenarios, considering the combination of operational errors, faults in field components or even faults in system integration can lead to situations of serious risks for the environment, man and facilities. The bow-tie technique can elicit different scenarios of occurrence of faults and their dynamic evolution, by the results of other risk analysis techniques, such as FMEA, FTA and ETA. The concept of Safety Instrumented Systems, along with the concept of Safety Barriers could be a solution for these problems. This paper proposes the use of Petri nets for formal modeling and the generation of control algorithms, by the simplification of several scenarios of faults fault scenarios listed by a team in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.