Abstract

Biodegradable jute fibers become conductive when varying amounts of carbon nanotubes (CNTs) are incorporated onto it using a simple dip-drying technique. For uniform and efficient coating, CNTs have been functionalized safely by citric-acid-assisted oxygen plasma, and different properties of the fibers are investigated. The method is safe because no strong acids are used and the plasma is operative to the surface of the CNTs only, hence less destructive to the structure of the CNTs. Field emission scanning electron micrographs confirm uniform attachment of CNTs on the surfaces of jute fibers. Owing to coating, the crystallinity and mechanical strength of the composite fibers increase significantly. The thermal stability and flame retardancy are also observed to be enhanced especially for the treated jute fibers coated with functionalized CNTs. The resistance per meter of these fibers sharply decreases from 2.30 to 0.02 kΩ depending on the amount of CNTs integrated on to it. Current density through the samples increases 1000 times and conductivity increases up to 5 S m−1, which also increases with temperature. The activation energy is observed to be decreased from 330 to 68 kJ mole−1. Therefore, these fibers can be applied in different electrical and electronic devices as well as in polymer composites as conductive fillers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call