Abstract
The development of smart anticancer drugs that can selectively kill cancer cells while sparing the surrounding healthy tissues/cells is of paramount importance for safe and effective cancer therapy. We report a novel class of bifunctional compounds based on diarylidenyl piperidone (DAP) conjugated to an N-hydroxypyrroline (NOH; a nitroxide precursor) group. We hypothesized that the DAP would have cytotoxic (anticancer) activity, whereas the NOH moiety would function as a tissue-specific modulator (antioxidant) of cytotoxicity. The study used four DAPs, namely H-4073 and H-4318 without NOH and HO-3867 and HO-4200 with NOH substitution. The goal of the study was to evaluate the proof-of-concept anticancer-versus -antioxidant efficacy of the DAPs using a number of cancerous (breast, colon, head and neck, liver, lung, ovarian, and prostate cancer) and noncancerous (smooth muscle, aortic endothelial, and ovarian surface epithelial) human cell lines. Cytotoxicity was determined using an MTT-based cell viability assay. All four compounds induced significant loss of cell viability in cancer cells, whereas HO-3867 and HO-4200 showed significantly less cytotoxicity in noncancerous cells. EPR measurements showed a metabolic conversion of the N-hydroxylamine function to nitroxide with significantly higher levels of the metabolite and superoxide radical-scavenging (antioxidant) activity in noncancerous cells compared to cancer cells. Western blot analysis showed that the DAP-induced growth arrest and apoptosis in cancer cells were mediated by inhibition of STAT3 phosphorylation at the Tyr705 and Ser727 residues and induction of apoptotic markers of cleaved caspase-3 and PARP. The results suggest that the antioxidant-conjugated DAPs will be useful as safe and effective anticancer agents for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.