Abstract

The presence of loose medium backfill above the horizontal pillar will technically hinder the efficient recovery of the pillar since the improper design and preserved roof protection layer height will potentially lead to casualties and equipment damage caused by large area collapse of filled tailings as well as roof fall accidents. In this study, a safe and efficient technique for the recovery of isolated pillars under loose tailings backfill was carried out via field investigation, theoretical analysis, numerical simulation, and analytic hierarchy process using the isolated pillars in the 855 middle sublevel of Hongling Zinc-Lead Mine, Chifeng, Inner Mongolia, as a practical engineering background. Current studies have revealed that the optimal scheme for an isolated horizontal pillar recovered via the cut-and-fill stoping of a drift vertical to ore body strike involves preserving a 1.0-m roof protection layer above the crown pillar combined with a spaced mining extraction sequence. This design minimizes ore dilution and losses during the pillar extraction process under safe operation. Our research results provide theoretical and technical support for the safe and efficient recovery of isolated pillars under loose tailings backfill in similar mines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call