Abstract

ABSTRACTBench scale methane cracking tests have been completed using a stack of ten SAES® St909 pellets. Baseline test conditions were five percent methane in helium at ten seem, 101 kPa (760 torr), and 700°C. Changes from baseline conditions varied temperature, pressure, flow rate, and carrier gas composition to include hydrogen and nitrogen. Methane cracking efficiency (ɛM) decreased with decreasing temperature and pressure. Faster gas feed rates decreased ɛM, but cracked more methane. Introducing hydrogen, nitrogen, or ammonia into the feed gas reduced ɛM, but ammonia was still cracked at high efficiencies. ɛM was further decreased when both nitrogen and hydrogen were in the carrier gas compared to using a carrier of only nitrogen or hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.