Abstract

The Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled pool type fast reactor being constructed at Kalpakkam, India. PFBR has all the reactor components immersed in the pool of sodium and the fission heat generated in the core, is removed by the sodium circulating in the pool. During normal operation this fission heat is transferred by primary sodium to secondary sodium, which in turn transfers the heat to water in the steam generator for producing steam. The removal of the decay heat generated in the reactor core after the reactor shutdown is also very important to maintain the structural integrity of reactor core components. PFBR employs two independent systems namely, Operational Grade Decay Heat Removal system (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS) for decay heat removal. SGDHR system is a passive system working on natural convection to ensure the core coolability even under station blackout condition. It is very important to study the thermal hydraulic behavior of Safety Grade Decay Heat Removal system of PFBR to ensure its reliable operation. A scaled down model of the circuit, named SADHANA has been modeled, designed, constructed and commissioned for demonstration and evaluation of these systems. The facility has completed around 2000 h of high temperature operation. The performance of the experimental system is satisfactory and it meets all the design requirements. At 550 °C sodium pool temperature in test vessel the secondary sodium loop generated a sodium flow of 6.7 m3/h. These experiments have revealed the adequacy and capability of SGDHR system to remove the decay heat from the fast breeder reactor core after its shutdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.