Abstract

Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method. The proposedSADmethod employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperativeeffectiveness of the SAD method. The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution. SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.