Abstract

Cooperative routing and spectrum aggregation are two promising techniques for Cognitive Radio Ad-Hoc Networks (CRAHNs). In this paper, we propose a spectrum aggregation-based cooperative routing protocol, termed as SACRP, for CRAHNs. To the best of our knowledge, this is the first contribution on spectrum aggregation-based cooperative routing for CRAHNs. The primary objective of SACRP is to provide higher energy efficiency, improve throughput, and reduce network delay for CRAHNs. In this regard, we design the MAC and Physical (PHY) layer, and proposed different spectrum aggregation algorithms for cognitive radio (CR) users. We propose two different classes of routing protocols; Class A for achieving higher energy efficiency and throughput, and Class B for reducing end-to-end latency. Based on stochastic geometry approach, we build a comprehensive analytical model for the proposed protocol. Besides, the proposed protocol is compared with the state of the art cooperative and non-cooperative routing algorithms with spectrum aggregation. Performance evaluation demonstrates the effectiveness of SACRP in terms of energy efficiency, throughput, and end-to-end delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call