Abstract

The alteration in mechanical properties of posterior pelvis ligaments may cause a biased pelvis deformation which, in turn, may contribute to hip and spine instability and malfunction. Here, the effect of different mechanical properties of ligaments on lumbopelvic deformation is analyzed via the finite element method. First, the improved finite element model was validated using experimental data from previous studies and then used to calculate the sensitivity of lumbopelvic deformation to changes in ligament mechanical properties, load magnitude, and unilateral ligament resection. The deformation of the lumbopelvic complex relative to a given load was predominant in the medial plane. The effect of unilateral resection on deformation appeared to be counterintuitive, suggesting that ligaments have the ability to redistribute load and that they play an important role in the mechanics of the lumbopelvic complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.