Abstract

Neuronal connections and pathways underlying sacculocollic reflexes were studied by intracellular recordings from neck extensor and flexor motoneurons in decerebrate cat. Bipolar electrodes were placed within the left saccular nerve, whereas other branches of the vestibular nerve were removed in the inner ear. To prevent spread of stimulus current to other branches of the vestibular nerve, the saccular nerve and the electrodes were covered with warm semisolid paraffin-Vaseline mixture. Saccular nerve stimulation evoked disynaptic (1.8-3.0 ms) excitatory postsynaptic potentials (EPSPs) in ipsilateral neck extensor motoneurons and di- or trisynaptic (1.8-4.0 ms) EPSPs in contralateral neck extensor motoneurons, and di- and trisynaptic (1.7-3.6 ms) inhibitory postsynaptic potentials (IPSPs) in ipsilateral neck flexor motoneurons and trisynaptic (2.7-4.0 ms) IPSPs in contralateral neck flexor motoneurons. Ipsilateral inputs were about twice as strong as contralateral ones to both extensor and flexor motoneurons. To determine the pathways mediating this connectivity, the lateral part of the spinal cord containing the ipsilateral lateral vestibulospinal tract (i-LVST) or the central part of the spinal cord containing the medial vestibulospinal tracts (MVSTs) and possibly reticulospinal fibers (RSTs) were transected at the caudal end of the C1 segment. Subsequent renewed intracellular recordings following sacculus nerve stimulation indicated that the pathway from the saccular nerve to the ipsilateral neck extensor motoneurons projects though the i-LVST, whereas the pathways to the contralateral neck extensors and to the bilateral neck flexor motoneurons descend in the MVSTs/RSTs. Our data show that sacculo-neck reflex connections display a qualitatively bilaterally symmetrical innervation pattern with excitatory connections to both neck extensor motoneuron pools, and inhibitory connections to both neck flexor motoneuron pools. This bilateral organization contrasts with the unilateral innervation scheme of the utriculus system. These results suggest a different symmetry plane along which sacculus postural reflexes are organized, thus supplementing the reference planes of the utriculus system and allowing the gravistatic system to represent all three translational spatial degrees of freedom. We furthermore suggest that the sacculocollic reflex plays an important role in maintaining the relative position of the head and the body against the vertical linear acceleration of gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.