Abstract
A series of Saccharomyces cerevisiae plasmids and mutant derivatives containing fusions of the Escherichia coli galactokinase gene, galK, to the yeast iso-1-cytochrome c CYC1 transcription unit were used to study the sequences affecting the initiation of translation in S. cerevisiae. When the CYC1 AUG initiation codon preceded the galK AUG codon and coding sequence and either the two AUGs were out of frame with each other or a nonsense codon was located between them, the expression of the galK gene was extremely low. Deletion of the CYC1 AUG and its surrounding sequences resulted in a 100-fold increase in galK expression. This dependence of galK expression on the elimination of the CYC1 AUG codon was used to select mutations in that codon. Then the ability of these altered initiation codons to serve in translational initiation was determined by reconstruction of the CYC1 gene 3' to and in frame with them. Initiation was found to occur at the codons UUG and AUA, but not at the codons AAA and AUC. Furthermore the codon UUG, when preceded by an A three nucleotides upstream, served as a better initiation codon than when a U was substituted for the A. The efficiency of translation from these non-AUG codons was quantitated by using a CYC1/galK protein-coding fusion and measuring cellular galactokinase levels. Initiation at the UUG codon was 6.9% as efficient as initiation at the wild-type AUG codon when preceded by an A three nucleotides upstream, but was over 10-fold less efficient when a U was substituted for that A. Initiation at AUA was 0.5% as efficient as at AUG. The effects of the sequences preceding the initiation codon are discussed in light of these results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have