Abstract

BackgroundRice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.ResultsRice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme.ConclusionOur study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production and FPase is a rate-limiting enzyme in saccharification.

Highlights

  • Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products

  • Cellulose content of rice straw was promoted from 39.74% in untreated rice straw to 70.9% after rice straw was subjected to alkali pretreatment

  • As a result of alkali pretreatment of rice straw with [2% (w/v) NaOH], cellulose content was increased from 38.3% to 59.3% in alkali-pretreated rice straw and lignin and hemicelluloses content was decreased from 14.9% and 28% in untreated rice straw to 9.5% and 10.9% in pretreated rice straw, respectively [11]

Read more

Summary

Introduction

Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. Few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is a bottleneck in the bioconversion of agricultural residues to value-added products. Hemicelluloses and lignin are the three main components which make up lignocellulosic biomass. Enzymatic hydrolysis is advantageous over acid hydrolysis It has low environmental impact and the reaction is carried out under mild conditions [3]. Due to the constant increase in the oil price, the significance of biofuel production from lignocellulosic biomass as an alternative energy source has been intensified and efficient conversion of lignocelluloses to biofuel is gaining interest [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.