Abstract

Marine macroalgal cell wall is predominantly comprised of cellulose (polysaccharide) with the complex chain of glycosidic linkages. Bioethanol production from macroalgae entails breaking this complex chain into simple glucose molecule, which has been the major challenge faced by the industries. Cellulases have been preferred for hydrolysis of cellulose due to the absence of inhibitors affecting the subsequent fermentation process. Cellulose degrading bacteria were isolated from wide-ranging sources from marine habitats to herbivore residues and gastrointestinal region. The investigation reveals that Vibrio parahaemolyticus bacteria has higher hydrolytic capacity with salt tolerance up to 14% and 3.5% salinity is optimum for growth. Higher hydrolytic activity of 2.45 was recorded on carboxymethyl cellulose medium at 48 h and hydrolytic activity of 2.46 on Ulva intestinalis hydrolysate, 3.06 on Ulva lactuca hydrolysate at 72 h of incubation. Total activity of enzyme of 2.11 U/ml and specific activity of 6.05 U/mg were recorded at 24 h. Enzyme hydrolysis of macroalgal biomass; U. intestinalis and U. lactuca produced 135.9 mg/g and 107.6 mg/g of reducing sugar respectively. The study reveals that the enzyme extracted from salt tolerant Vibrio parahaemolyticus bacteria is suitable for optimal saccharification of seaweed polysaccharides towards biofuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.