Abstract

We report the low-voltage operation of organic thin-film transistors (OTFTs) based on high-resolution printed source/drain electrodes that are produced by a surface photoreactive nanometal printing (SuPR-NaP) technique. We utilized an ultrathin layer of perfluoropolymer, Cytop, that functions not only as a gate dielectric layer in the OTFTs but also as a base layer for producing a patterned reactive surface for silver nanoparticle chemisorption in the SuPR-NaP technique. We successfully demonstrate 2 V operation with negligible hysteresis in the polycrystalline pentacene OTFT with a gate dielectric thickness of 22 nm, and we achieved current amplification by the printed electrodes modified with pentafluorobenzenethiol. The SuPR-NaP technique enables the production of high-resolution printed silver electrodes required for high-performance OTFTs, which have potential practical electronic device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.