Abstract
The detection of a sequence of events requires memory. The detection of visual motion is a well-studied example; there the memory allows the comparison of current with earlier visual input. This comparison results in an estimate of direction and speed of motion. The dominant model of motion detection in primates—the motion energy model—assumes that this memory resides in subclasses of cells with slower temporal dynamics. It is not clear, however, how such slow dynamics could arise. We used extracellularly recorded responses of neurons in the macaque middle temporal area to train an artificial neural network with recurrent connectivity. The trained network successfully reproduced the population response, and had many properties also found in the visual cortex (e.g., Gabor-like receptive fields, a hierarchy of simple and complex cells, motion opponency). When probed with reverse-correlation methods, the network's response was very similar to that of a feed-forward motion energy model, even though recurrent ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.